Article ID Journal Published Year Pages File Type
4595269 Journal of Number Theory 2009 8 Pages PDF
Abstract

Zagier introduced toroidal automorphic forms to study the zeros of zeta functions: an automorphic form on GL2 is toroidal if all its right translates integrate to zero over all non-split tori in GL2, and an Eisenstein series is toroidal if its weight is a zero of the zeta function of the corresponding field. We compute the space of such forms for the global function fields of class number one and genus g⩽1, and with a rational place. The space has dimension g and is spanned by the expected Eisenstein series. We deduce an “automorphic” proof for the Riemann hypothesis for the zeta function of those curves.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory