Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4595272 | Journal of Number Theory | 2009 | 12 Pages |
Abstract
In this note we consider the Lüroth expansion of a real number, and we study the Hausdorff dimension of a class of sets defined in terms of the frequencies of digits in the expansion. We also study the speed at which the approximants obtained from the Lüroth expansion converge. In addition, we describe the multifractal properties of the level sets of the Lyapunov exponent, which measures the exponential speed of approximation obtained from the approximants. Finally, we describe the relation of the Lüroth expansion with the continued fraction expansion and the β-expansion. We remark that our work is still another application of the theory of dynamical systems to number theory.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory