Article ID Journal Published Year Pages File Type
4595380 Journal of Number Theory 2006 7 Pages PDF
Abstract

Let G be an abelian group of order k. How is the problem of minimizing the number of sums from a sequence of given length in G related to the problem of minimizing the number of k-sums? In this paper we show that the minimum number of k-sums for a sequence a1,…,ar that does not have 0 as a k-sum is attained at the sequence b1,…,br−k+1,0,…,0, where b1,…,br−k+1 is chosen to minimise the number of sums without 0 being a sum. Equivalently, to minimise the number of k-sums one should repeat some value k−1 times. This proves a conjecture of Bollobás and Leader, and extends results of Gao and of Bollobás and Leader.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory