Article ID Journal Published Year Pages File Type
4595398 Journal of Number Theory 2006 19 Pages PDF
Abstract

We introduce higher-dimensional Dedekind sums with a complex parameter z, generalizing Zagier's higher-dimensional Dedekind sums. The sums tend to Zagier's higher-dimensional Dedekind sums as z→∞. We show that the sums turn out to be generating functions of higher-dimensional Apostol–Zagier sums which are defined to be hybrids of Apostol's sums and Zagier's sums. We prove reciprocity law for the sums. The new reciprocity law includes reciprocity formulas for both Apostol and Zagier's sums as its special case. Furthermore, as its application we obtain relations between special values of Hurwitz zeta function and Bernoulli numbers, as well as new trigonometric identities.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory