Article ID Journal Published Year Pages File Type
4595448 Journal of Number Theory 2007 15 Pages PDF
Abstract

We give several new constructions for moderate rank elliptic curves over Q(T). In particular we construct infinitely many rational elliptic surfaces (not in Weierstrass form) of rank 6 over Q using polynomials of degree two in T. While our method generates linearly independent points, we are able to show the rank is exactly 6 without having to verify the points are independent. The method generalizes; however, the higher rank surfaces are not rational, and we need to check that the constructed points are linearly independent.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory