Article ID Journal Published Year Pages File Type
4595483 Journal of Number Theory 2008 20 Pages PDF
Abstract

Following Kahn, and Assim and Movahhedi, we look for bounds for the order of the capitulation kernels of higher K-groups of S-integers into abelian S-ramified p-extensions. The basic strategy is to change twists inside some Galois-cohomology groups, which is done via the comparison of Tate Kernels of higher order. We investigate two ways: a global one, valid for twists close to 0 (in a certain sense), and a local one, valid for twists close to 1 in cyclic extensions. The global method produces lower bounds for abelian p-extensions which are S-ramified, but not Zp-embeddable. The local method is close to that of [J. Assim, A. Movahhedi, Bounds for étale capitulation kernels, K-Theory 33 (2004) 199–213], but is improved to take into consideration what happens when S consists of only the p-places. In contrast to the first one, one can expect this second method to produce nontrivial lower bounds in certain Zp-extensions. For example, we construct Zp-extensions in which the capitulation kernel is as big as we want (when letting the twist vary). We also include a complete solution to the problem of comparing Tate Kernels.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory