Article ID Journal Published Year Pages File Type
4595501 Journal of Number Theory 2007 29 Pages PDF
Abstract

We pose the problem of identifying the set K(G,Ω) of Galois number fields with given Galois group G and root discriminant less than the Serre constant Ω≈44.7632. We definitively treat the cases G=A4, A5, A6 and S4, S5, S6, finding exactly 59, 78, 5 and 527, 192, 13 fields, respectively. We present other fields with Galois group SL3(2), A7, S7, PGL2(7), SL2(8), ΣL2(8), PGL2(9), PΓL2(9), PSL2(11), and , and root discriminant less than Ω. We conjecture that for all but finitely many groups G, the set K(G,Ω) is empty.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory