Article ID Journal Published Year Pages File Type
4595593 Journal of Number Theory 2006 16 Pages PDF
Abstract

In this paper we prove the best possible upper bounds for the number of elements in a set of polynomials with integer coefficients all having the same degree, such that the product of any two of them plus a linear polynomial is a square of a polynomial with integer coefficients. Moreover, we prove that there does not exist a set of more than 12 polynomials with integer coefficients and with the property from above. This significantly improves a recent result of the first two authors with Tichy [A. Dujella, C. Fuchs, R.F. Tichy, Diophantine m-tuples for linear polynomials, Period. Math. Hungar. 45 (2002) 21–33].

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory