Article ID Journal Published Year Pages File Type
4595595 Journal of Number Theory 2006 38 Pages PDF
Abstract

New explicit formulas are given for the supersingular polynomial ssp(t) and the Hasse invariant of an elliptic curve E in characteristic p. These formulas are used to derive identities for the Hasse invariants of elliptic curves En in Tate normal form with distinguished points of order n. This yields a proof that and are projective invariants (mod p) for the octahedral group and the icosahedral group, respectively; and that the set of fourth roots λ1/4 of supersingular parameters of the Legendre normal form Y2=X(X−1)(X−λ) in characteristic p has octahedral symmetry. For general n⩾4, the field of definition of a supersingular En is determined, along with the field of definition of the points of order n on En.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory