Article ID Journal Published Year Pages File Type
4596329 Journal of Pure and Applied Algebra 2014 18 Pages PDF
Abstract

We analyze the extent to which a quantum universal enveloping algebra of a Kac–Moody algebra g is defined by multidegrees of its defining relations. To this end, we consider a class of character Hopf algebras defined by the same number of defining relations of the same degrees as the Kac–Moody algebra g. We demonstrate that if the generalized Cartan matrix A of g is connected then the algebraic structure, up to a finite number of exceptional cases, is defined by just one “continuous” parameter q related to a symmetrization of A, and one “discrete” parameter m related to the modular symmetrizations of A. The Hopf algebra structure is defined by n(n−1)/2 additional “continuous” parameters. We also consider the exceptional cases for Cartan matrices of finite or affine types in more detail, establishing the number of exceptional parameter values in terms of the Fibonacci sequence.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory