Article ID Journal Published Year Pages File Type
459634 Journal of Network and Computer Applications 2014 10 Pages PDF
Abstract

Network intrusion detection systems (NIDS) are widely deployed in various network environments. Compared to an anomaly based NIDS, a signature-based NIDS is more popular in real-world applications, because of its relatively lower false alarm rate. However, the process of signature matching is a key limiting factor to impede the performance of a signature-based NIDS, in which the cost is at least linear to the size of an input string and the CPU occupancy rate can reach more than 80% in the worst case. In this paper, we develop an adaptive blacklist-based packet filter using a statistic-based approach aiming to improve the performance of a signature-based NIDS. The filter employs a blacklist technique to help filter out network packets based on IP confidence and the statistic-based approach allows the blacklist generation in an adaptive way, that is, the blacklist can be updated periodically. In the evaluation, we give a detailed analysis of how to select weight values in the statistic-based approach, and investigate the performance of the packet filter with a DARPA dataset, a real dataset and in a real network environment. Our evaluation results under various scenarios show that our proposed packet filter is encouraging and effective to reduce the burden of a signature-based NIDS without affecting network security.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, ,