Article ID Journal Published Year Pages File Type
4596507 Journal of Pure and Applied Algebra 2014 10 Pages PDF
Abstract

We extend some known results on radicals and prime ideals from polynomial rings and Laurent polynomial rings to Z-graded rings, i.e, rings graded by the additive group of integers. The main of them concerns the Brown–McCoy radical G and the radical S, which for a given ring A is defined as the intersection of prime ideals I of A such that A/I is a ring with a large center. The studies are related to some open problems on the radicals G and S of polynomial rings and situated in the context of Koethe’s problem.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory