Article ID Journal Published Year Pages File Type
4596622 Journal of Pure and Applied Algebra 2012 9 Pages PDF
Abstract

In this article we study the representations of general linear groups which arise from their action on flag spaces. These representations can be decomposed into irreducibles by proving that the associated Hecke algebra is cellular. We give a geometric interpretation of a cellular basis of such Hecke algebras which was introduced by Murphy in the case of finite fields. We apply these results to decompose representations which arise from the space of submodules of a free module over principal ideal local rings of length two with a finite residue field.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory