Article ID Journal Published Year Pages File Type
4596765 Journal of Pure and Applied Algebra 2012 7 Pages PDF
Abstract

The weak and strong Lefschetz properties are two basic properties that Artinian algebras may have. Both Lefschetz properties may vary under small perturbations or changes of the characteristic. We study these subtleties by proposing a systematic way of deforming a monomial ideal failing the weak Lefschetz property to an ideal with the same Hilbert function and the weak Lefschetz property. In particular, we lift a family of Artinian monomial ideals to finite level sets of points in projective space with the property that a general hyperplane section has the weak Lefschetz property in almost all characteristics, whereas a special hyperplane section does not have this property in any characteristic.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory