Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4596960 | Journal of Pure and Applied Algebra | 2013 | 13 Pages |
Abstract
Lie bialgebra structures on the extended affine Lie algebra are investigated. In particular, all Lie bialgebra structures on are shown to be triangular coboundary. This result is obtained by employing some techniques, which may also work for more general extended affine Lie algebras, to prove the triviality of the first cohomology group of with coefficients in the tensor product of its adjoint module, namely, .
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory