Article ID Journal Published Year Pages File Type
4596990 Journal of Pure and Applied Algebra 2012 7 Pages PDF
Abstract

In this note we aim to give a new, elementary proof of a statement that was first proved by Timofte (2003) [15]. It says that a symmetric real polynomial F of degree d in n variables is positive on Rn (or on ) if and only if it is non-negative on the subset of points with at most max{⌊d/2⌋,2} distinct components. We deduce Timofte’s original statement as a corollary of a slightly more general statement on symmetric optimization problems. The idea that we are using to prove this statement is that of relating it to a linear optimization problem in the orbit space. The fact that for the case of the symmetric group Sn this can be viewed as a question on normalized univariate real polynomials with only real roots allows us to conclude the theorems in a very elementary way. We hope that the methods presented here will make it possible to derive similar statements also in the case of other groups.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory