Article ID Journal Published Year Pages File Type
4597076 Journal of Pure and Applied Algebra 2009 9 Pages PDF
Abstract
We consider symmetric indecomposable d-linear (d>2) spaces of dimension n over an algebraically closed field k of characteristic 0, whose center (the analog of the space of symmetric matrices of a bilinear form) is cyclic, as introduced by Reichstein [B. Reichstein, On Waring's problem for cubic forms, Linear Algebra Appl. 160 (1992) 1-61]. The automorphism group of these spaces is determined through the action on the center and through the determination of the Lie algebra. Furthermore, we relate the Lie algebra to the Witt algebra.
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,