Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4597177 | Journal of Pure and Applied Algebra | 2011 | 19 Pages |
Abstract
We study connections between recollements of the derived category D(Mod R) of a ring R and tilting theory. We first provide constructions of tilting objects from given recollements, recovering several different results from the literature. Secondly, we show how to construct a recollement from a tilting module of projective dimension one. By Nicolás and Saorín (2009) [31], every recollement of D(Mod R) is associated to a differential graded homological epimorphism λ:R→S. We will focus on the case where λ is a homological ring epimorphism or even a universal localization. Our results will be employed in a forthcoming paper in order to investigate stratifications of D(Mod R).
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory