Article ID Journal Published Year Pages File Type
4597195 Journal of Pure and Applied Algebra 2011 9 Pages PDF
Abstract

We show that every Abelian group satisfying a mild cardinal inequality admits a pseudocompact group topology from which all countable subgroups inherit the maximal totally bounded topology (we say that such a topology satisfies property ).Every pseudocompact Abelian group G with cardinality |G|≤22c satisfies this inequality and therefore admits a pseudocompact group topology with property . Under the Singular Cardinal Hypothesis (SCH) this criterion can be combined with an analysis of the algebraic structure of pseudocompact groups to prove that every pseudocompact Abelian group admits a pseudocompact group topology with property .We also observe that pseudocompact Abelian groups with property contain no infinite compact subsets and are examples of Pontryagin reflexive precompact groups that are not compact.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory