Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4597362 | Journal of Pure and Applied Algebra | 2010 | 9 Pages |
Abstract
We analyze k-stage formality and relate resonance with this type of formality properties. For instance, we show that, for a finitely generated nilpotent group that is k-stage formal, the resonance varieties are trivial up to degree k. We also show that the cohomology ring, truncated up to degree k+1, of a finitely generated nilpotent, k-stage formal group is generated in degree 1; this criterion is necessary and sufficient for a finitely generated, 2-step nilpotent group to be k-stage formal. We compute resonance varieties for Heisenberg-type groups and deduce the degree of partial formality for this class of groups.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory