Article ID Journal Published Year Pages File Type
4597362 Journal of Pure and Applied Algebra 2010 9 Pages PDF
Abstract

We analyze k-stage formality and relate resonance with this type of formality properties. For instance, we show that, for a finitely generated nilpotent group that is k-stage formal, the resonance varieties are trivial up to degree k. We also show that the cohomology ring, truncated up to degree k+1, of a finitely generated nilpotent, k-stage formal group is generated in degree 1; this criterion is necessary and sufficient for a finitely generated, 2-step nilpotent group to be k-stage formal. We compute resonance varieties for Heisenberg-type groups and deduce the degree of partial formality for this class of groups.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory