Article ID Journal Published Year Pages File Type
4597720 Journal of Pure and Applied Algebra 2007 10 Pages PDF
Abstract

We define Bernstein–Gelfand–Ponomarev reflection functors in the cluster categories of hereditary algebras. They are triangle equivalences which provide a natural quiver realization of the “truncated simple reflections” on the set of almost positive roots Φ≥−1Φ≥−1 associated with a finite dimensional semi-simple Lie algebra. Combining this with the tilting theory in cluster categories developed in [A. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. (in press). math.RT/0402054], we give a unified interpretation via quiver representations for the generalized associahedra associated with the root systems of all Dynkin types (simply laced or non-simply laced). This confirms the Conjecture 9.1 in [A. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. (in press). math.RT/0402054] for all Dynkin types.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
,