Article ID Journal Published Year Pages File Type
4598143 Journal of Pure and Applied Algebra 2006 10 Pages PDF
Abstract
Ramamurthi proved that weak regularity is equivalent to regularity and biregularity for left Artinian rings. We observe this result under a generalized condition. For a ring R satisfying the ACC on right annihilators, we actually prove that if R is left weakly regular then R is biregular, and that R is left weakly regular if and only if R is a direct sum of a finite number of simple rings. Next we study maximality of strongly prime ideals, showing that a reduced ring R is weakly regular if and only if R is left weakly regular if and only if R is left weakly π-regular if and only if every strongly prime ideal of R is maximal.
Keywords
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, , , , ,