Article ID Journal Published Year Pages File Type
4598241 Journal of Pure and Applied Algebra 2007 12 Pages PDF
Abstract

We study the family of ideals defined by mixed size minors of two-sided ladders of indeterminates. We compute their Gröbner bases with respect to a skew-diagonal monomial order, then we use them to compute the height of the ideals. We show that these ideals correspond to a family of irreducible projective varieties, that we call mixed ladder determinantal varieties. We show that these varieties are arithmetically Cohen–Macaulay, and we characterize the arithmetically Gorenstein ones. Our main result consists in proving that mixed ladder determinantal varieties belong to the same G-biliaison class of a linear variety.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
,