Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4598513 | Linear Algebra and its Applications | 2016 | 10 Pages |
Abstract
Denote by μk(L(T))μk(L(T)) the k-th Laplacian eigenvalue of a tree T . Let Tk(2t)Tk(2t) be the set of all trees of order 2tk2tk with perfect matchings. In this note, the trees T in Tk(2t)Tk(2t) with μk(L(T))=t+2+t2+42 are characterized, which solves Problem of J.X. Li, W.C. Shiu and A. Chang in [3] completely.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Xiying Yuan,