Article ID Journal Published Year Pages File Type
4598950 Linear Algebra and its Applications 2015 15 Pages PDF
Abstract

A real square matrix A is said to be almost skew-symmetric if its symmetric part has rank one. In this article certain fundamental questions on almost skew-symmetric matrices are considered. Among other things, necessary and sufficient conditions on the entries of a matrix in order for it to be almost skew-symmetric are presented. Sums and subdirect sums are studied. Certain new results for the Moore–Penrose inverse of an almost skew-symmetric matrix are proved. An interesting analogue of Tucker's theorem for skew-symmetric matrices is derived for almost skew-symmetric matrices. Surprisingly, this analogue leads to a proof of Farkas' lemma.

Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,