Article ID Journal Published Year Pages File Type
4599448 Linear Algebra and its Applications 2014 25 Pages PDF
Abstract

Several approaches for ordering graphs by spectral parameters are presented in the literature. We can find graph orderings either by the greatest eigenvalue (spectral radius or index) or by the sum of the absolute values of the eigenvalues (the energy of a graph) or by the second smallest eigenvalue of the Laplacian matrix (the algebraic connectivity), among others. By considering the fact that the algebraic connectivity is related to the connectivity and shape of the graphs, several structural properties of graphs relative to this parameter have been studied. Hence, a large number of papers about ordering graphs by algebraic connectivity, mainly about trees and graphs with few cycles, have been published. This paper surveys the significant results concerning these topics, trying to focus on possible points to be investigated in order to understand the difficulties to obtain partial orderings via algebraic connectivity.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, , , ,