Article ID Journal Published Year Pages File Type
4599695 Linear Algebra and its Applications 2014 12 Pages PDF
Abstract
We study the existence of invariant quadrics for a class of systems of difference equations in Rn defined by linear fractionals sharing denominator. Such systems can be described in terms of some square matrix A and we prove that there is a correspondence between non-degenerate invariant quadrics and solutions to a certain matrix equation involving A. We show that if A is semisimple and the corresponding system admits non-degenerate quadrics, then every orbit of the dynamical system is contained either in an invariant affine variety or in an invariant quadric.
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
,