Article ID Journal Published Year Pages File Type
460255 Journal of Network and Computer Applications 2008 21 Pages PDF
Abstract

Although the Differentiated Services architecture supports scalable packet forwarding based on aggregate flows, the detailed procedure of Quality of Service (QoS) flow set-up within this architecture has not been well established. In this paper we explore the possibility of a scalable QoS flow set-up using a sink-tree paradigm. The paradigm initially constructs a sink tree at each egress edge router using network topology and bandwidth information provided by a QoS extended version of Open Shortest Path First (OSPF), which is a widely used link-state routing protocol. Our sink-tree paradigm dynamically reallocates network bandwidths online according to traffic demands. As a consequence, our paradigm easily supports QoS routing, resource allocation, and admission control at ingress edge routers without consulting core routers in a way that the QoS flow set-up time and overhead are minimized. Simulation results are very encouraging in that the proposed methodology requires significantly less communication overhead in setting up QoS flows compared to the traditional per-flow signaling-based methodology while still maintaining high resource utilization.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, ,