Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4604059 | Annales de l'Institut Henri Poincare (C) Non Linear Analysis | 2015 | 26 Pages |
Abstract
In this work we study the following fractional critical problem(Pλ)={(−Δ)su=λuq+u2s⁎−1,u>0in Ω,u=0in Rn∖Ω, where Ω⊂RnΩ⊂Rn is a regular bounded domain, λ>0λ>0, 02sn>2s. Here (−Δ)s(−Δ)s denotes the fractional Laplace operator defined, up to a normalization factor, by−(−Δ)su(x)=∫Rnu(x+y)+u(x−y)−2u(x)|y|n+2sdy,x∈Rn. Our main results show the existence and multiplicity of solutions to problem (Pλ)(Pλ) for different values of λ . The dependency on this parameter changes according to whether we consider the concave power case (0
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
B. Barrios, E. Colorado, R. Servadei, F. Soria,