Article ID Journal Published Year Pages File Type
4605054 Applied and Computational Harmonic Analysis 2015 28 Pages PDF
Abstract
We consider multichannel deconvolution in a periodic setting with long-memory errors under three different scenarios for the convolution operators, i.e., super-smooth, regular-smooth and box-car convolutions. We investigate global performances of linear and hard-thresholded non-linear wavelet estimators for functions over a wide range of Besov spaces and for a variety of loss functions defining the risk. In particular, we obtain upper bounds on convergence rates using the Lp-risk (1≤p<∞). Contrary to the case where the errors follow independent Brownian motions, it is demonstrated that multichannel deconvolution with errors that follow independent fractional Brownian motions with different Hurst parameters results in a much more involved situation. An extensive finite-sample numerical study is performed to supplement the theoretical findings.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , ,