Article ID Journal Published Year Pages File Type
4606194 Differential Geometry and its Applications 2011 12 Pages PDF
Abstract

We show that there exists a family of Riemannian metrics on the tangent bundle of a two-sphere, which induces metrics of constant curvature on its unit tangent bundle. In other words, given such a metric on the tangent bundle of a two-sphere, the Hopf map is identified with a Riemannian submersion from the universal covering space of the unit tangent bundle, equipped with the induced metric, onto the two-sphere. A hyperbolic counterpart dealing with the tangent bundle of a hyperbolic plane is also presented.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , ,