Article ID Journal Published Year Pages File Type
4609507 Journal of Differential Equations 2015 20 Pages PDF
Abstract

We propose an inverse scattering scheme of recovering a polyhedral obstacle in RnRn, n=2,3n=2,3, by only a few high-frequency acoustic backscattering measurements. The obstacle could be sound-soft or sound-hard. It is shown that the modulus of the far-field pattern in the backscattering aperture possesses a certain local maximum behavior, from which one can determine the exterior normal directions of the front sides/faces. Then by using the phaseless backscattering data corresponding to a few incident plane waves with suitably chosen incident directions, one can determine the exterior unit normal vector of each side/face of the obstacle. After the determination of the exterior unit normals, the recovery is reduced to a finite-dimensional problem of determining a location point of the obstacle and the distance of each side/face away from the location point. For the latter reconstruction, we need to make use of the far-field data with phases. Numerical experiments are also presented to illustrate the effectiveness of the proposed scheme.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,