Article ID Journal Published Year Pages File Type
4609608 Journal of Differential Equations 2016 34 Pages PDF
Abstract

We first consider an elastic thin heterogeneous cylinder of radius of order ε: the interior of the cylinder is occupied by a stiff material (fiber) that is surrounded by a soft material (matrix). By assuming that the elasticity tensor of the fiber does not scale with ε   and that of the matrix scales with ε2ε2, we prove that the one dimensional model is a nonlocal system.We then consider a reference configuration domain filled out by periodically distributed rods similar to those described above. We prove that the homogenized model is a second order nonlocal problem.In particular, we show that the homogenization problem is directly connected to the 3D–1D dimensional reduction problem.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,