| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 4609889 | Journal of Differential Equations | 2016 | 36 Pages | 
Abstract
												A class of reaction diffusion equation with spatio-temporal delays is systematically investigated. When the reaction function of this equation is nonlinear without monotonicity, it is shown that there exists a spreading speed c⁎>0c⁎>0 for this equation such that c⁎c⁎ is linearly determinate and coincides with the minimal wave speed of traveling waves, and that this equation admits a unique traveling wave (up to translation) with speed c>c⁎c>c⁎ and no traveling wave with c
Related Topics
												
													Physical Sciences and Engineering
													Mathematics
													Analysis
												
											Authors
												Zhaoquan Xu, Dongmei Xiao, 
											