Article ID Journal Published Year Pages File Type
4609890 Journal of Differential Equations 2016 35 Pages PDF
Abstract

Existence and uniqueness of global in time measure solution for the multidimensional aggregation equation is analyzed. Such a system can be written as a continuity equation with a velocity field computed through a self-consistent interaction potential. In Carrillo et al. (2011) [17], a well-posedness theory based on the geometric approach of gradient flows in measure metric spaces has been developed for mildly singular potentials at the origin under the basic assumption of being λ-convex. We propose here an alternative method using classical tools from PDEs. We show the existence of a characteristic flow based on Filippov's theory of discontinuous dynamical systems such that the weak measure solution is the pushforward measure with this flow. Uniqueness is obtained thanks to a contraction argument in transport distances using the λ  -convexity of the potential. Moreover, we show the equivalence of this solution with the gradient flow solution. Finally, we show the convergence of a numerical scheme for general measure solutions in this framework allowing for the simulation of solutions for initial smooth densities after their first blow-up time in LpLp-norms.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , , ,