Article ID Journal Published Year Pages File Type
4610047 Journal of Differential Equations 2015 25 Pages PDF
Abstract

In this paper, we focus on the dynamics for a Lotka–Volterra type weak competition system with two free boundaries, where free boundaries which may intersect each other as time evolves are used to describe the spreading of two competing species, respectively. In the weak competition case, the dynamics of this model can be classified into four cases, which forms a spreading–vanishing quartering. The notion of the minimal habitat size for spreading is introduced to determine if species can always spread. Some sufficient conditions for spreading and vanishing are established. Also, when spreading occurs, some rough estimates for spreading speed and the long-time behavior of solutions are established.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,