Article ID Journal Published Year Pages File Type
4610248 Journal of Differential Equations 2014 30 Pages PDF
Abstract
In this paper we extend the elegant results of Chen, Lam and Lou [6, Section 2], where a concentration phenomenon was established as the advection blows up, to a general class of adventive-diffusive generalized logistic equations of degenerate type. Our improvements are really sharp as we allow the carrying capacity of the species to vanish in some subdomain with non-empty interior. The main technical devices used in the derivation of the concentration phenomenon are Proposition 3.2 of Cano-Casanova and López-Gómez [5], Theorem 2.4 of Amann and López-Gómez [1] and the classical Harnack inequality. By the relevance of these results in spatial ecology, complete technical details seem imperative, because the proof of Theorem 2.2 of [6] contains some gaps originated by an “optimistic” use of Proposition 3.2 of [5]. Some of the general assumptions of [6] are substantially relaxed.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,