Article ID Journal Published Year Pages File Type
4610353 Journal of Differential Equations 2014 34 Pages PDF
Abstract

We study a class of non-strictly and weakly hyperbolic systems of conservation laws which contain the equations of geometrical optics as a prototype. The Riemann problems are constructively solved. The Riemann solutions include two kinds of interesting structures. One involves a cavitation where both state variables tend to zero forming a singularity, the other is a delta shock wave in which both state variables contain Dirac delta function simultaneously. The generalized Rankine–Hugoniot relation and entropy condition are proposed to solve the delta shock wave. Moreover, with the limiting viscosity approach, we show all of the existence, uniqueness and stability of solution involving the delta shock wave. The generalized Rankine–Hugoniot relation is also confirmed. Then our theory is successfully applied to two typical systems including the geometric optics equations. Finally, we present the numerical results coinciding with the theoretical analysis.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,