Article ID Journal Published Year Pages File Type
4610648 Journal of Differential Equations 2014 26 Pages PDF
Abstract

This paper deals with a quasilinear parabolic–elliptic chemotaxis system with logistic source, under homogeneous Neumann boundary conditions in a smooth bounded domain. For the case of positive diffusion function, it is shown that the corresponding initial boundary value problem possesses a unique global classical solution which is uniformly bounded. Moreover, if the diffusion function is zero at some point, or a positive diffusion function and the logistic damping effect is rather mild, we proved that the weak solutions are global existence. Finally, it is asserted that the solutions approach constant equilibria in the large time for a specific case of the logistic source.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , ,