Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4610790 | Journal of Differential Equations | 2012 | 31 Pages |
We consider a singular reaction–diffusion system arising in modelling prey–predator interactions in a fragile environment. Since the underlying ODEs system exhibits a complex dynamics including possible finite time quenching, one first provides a suitable notion of global travelling wave weak solution. Then our study focusses on the existence of travelling waves solutions for predator invasion in such environments. We devise a regularized problem to prove the existence of travelling wave solutions for predator invasion followed by a possible co-extinction tail for both species. Under suitable assumptions on the diffusion coefficients and on species growth rates we show that travelling wave solutions are actually positive on a half line and identically zero elsewhere, such a property arising for every admissible wave speeds.