Article ID Journal Published Year Pages File Type
4611838 Journal of Differential Equations 2008 40 Pages PDF
Abstract

We study the behaviour of solutions to nonlinear functional differential equations of mixed type (MFDEs), that remain sufficiently close to a prescribed periodic solution. Under a discreteness condition on the Floquet spectrum, we show that all such solutions can be captured on a finite dimensional invariant center manifold, that inherits the smoothness of the nonlinearity. This generalizes the results that were obtained previously in [H.J. Hupkes, S.M. Verduyn Lunel, Center manifold theory for functional differential equations of mixed type, J. Dynam. Differential Equations 19 (2007) 497–560] for bifurcations around equilibrium solutions to MFDEs.

Related Topics
Physical Sciences and Engineering Mathematics Analysis