Article ID Journal Published Year Pages File Type
461222 Journal of Systems and Software 2011 19 Pages PDF
Abstract

With the explosive proliferation of mobile devices such as smartphones, tablets, and sensor nodes, location-based services are getting even more attention than before, considered as one of the killer applications in the upcoming mobile computing era. Developing location-based services necessarily requires an effective and scalable location data processing technology. In this paper, we present Mobiiscape, a novel location monitoring system that collectively monitors mobility patterns of a large number of moving objects in a large-scale city to support city-wide mobility-aware applications. Mobiiscape provides an SQL-like query language named Moving Object Monitoring Query Language (MQL) that allows applications to intuitively specify Mobility Pattern Monitoring Queries (MPQs). Further, Mobiiscape provides a set of scalable location monitoring techniques to efficiently process a large number of MPQs over a large number of location streams. The scalable processing techniques include a (1) Place Border Index, a spatial index for quickly searching for relevant queries upon receiving location streams, (2) Place-Based Window, a spatial-purpose window for efficiently detecting primitive mobility patterns, (3) Shared NFA, a shared query processing technique for efficiently matching complex mobility patterns, and (4) Attribute Pre-matching Bitmap, an in-memory data structure for efficiently filtering out moving objects based on their attributes. We have implemented a Mobiiscape prototype system. Then, we show the usefulness of the system by implementing promising location-based applications based on it such as a ubiquitous taxicab service and a location-based advertising. Also, we demonstrate the performance benefit of the system through extensive evaluation and comparison.

► We present Mobiiscape that monitors mobility patterns of many moving objects. ► Mobiiscape provides applications with an SQL-like query language named MQL. ► Place-based mobility pattern monitoring enables intuitive application development. ► Complex mobility patterns can be monitored by composing primitive mobility events. ► Spatial indexing and shared processing increase the scalability of the system.

Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , , , , ,