Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4613603 | Journal of Differential Equations | 2006 | 29 Pages |
Abstract
We introduce a notion of entropy solution for a scalar conservation law on a bounded domain with nonhomogeneous boundary condition: ut+divΦ(u)=f on Q=(0,T)×Ω, u(0,⋅)=u0 on Ω and “u=a on some part of the boundary (0,T)×∂Ω.” Existence and uniqueness of the entropy solution is established for any Φ∈C(R;RN), u0∈L∞(Ω), f∈L∞(Q), a∈L∞((0,T)×∂Ω). In the L1-setting, a corresponding result is proved for the more general notion of renormalised entropy solution.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis