Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4614044 | Journal of Mathematical Analysis and Applications | 2017 | 16 Pages |
Abstract
We study a new type of nonlinear Schrödinger equation where the coefficient of Laplacian depends on spatial variable. Based on a modified Hankel transform and delicate frequency estimates, we establish the local well-posedness of the NLS with spatial variable coefficient in the weighted Lebesgue space for n≥2n≥2, and extend the Strichartz estimates to the non-radially Schrödinger equation with spatial variable coefficient in 2D Euclidian space.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Jian Zhai, Bowen Zheng,