Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4614666 | Journal of Mathematical Analysis and Applications | 2016 | 11 Pages |
Abstract
In this paper, we study symmetry property for positive solutions of mixed integro-differential equationsequation(0.1){(−Δ)xα1u+(−Δ)yα2u=f(u)inB1N(0)×B1M(0),u=0in(RN×RM)∖(B1N(0)×B1M(0)), where N , M≥1M≥1, x∈B1N(0)={x∈RN:|x|<1}, y∈B1M(0)={y∈RM:|y|<1}, the operator (−Δ)xα1 denotes the fractional Laplacian of exponent α1∈(0,1)α1∈(0,1) with respect to x , (−Δ)yα2 denotes the fractional Laplacian of exponent α2∈(0,1)α2∈(0,1) with respect to y. We make use of the Maximum Principle for small domain to start the moving planes to obtain the symmetry results for positive solutions.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Disson dos Prazeres, Ying Wang,