Article ID Journal Published Year Pages File Type
4614836 Journal of Mathematical Analysis and Applications 2015 22 Pages PDF
Abstract

We investigate the sparse spikes deconvolution problem onto spaces of algebraic polynomials. Our framework encompasses the measure reconstruction problem from a combination of noiseless and noisy moment measurements. We study a TV-norm regularization procedure to localize the support and estimate the weights of a target discrete measure in this frame. Furthermore, we derive quantitative bounds on the support recovery and the amplitude errors under a Chebyshev-type minimal separation condition on its support. Incidentally, we study the localization of the knots of non-uniform splines when a Gaussian perturbation of their inner-products with a known polynomial basis is observed (i.e. a small degree polynomial approximation is known) and the boundary conditions are known. We prove that the knots can be recovered in a grid-free manner using semidefinite programming.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,