Article ID Journal Published Year Pages File Type
4615619 Journal of Mathematical Analysis and Applications 2015 12 Pages PDF
Abstract

We establish various properties for the zero sets of three families of bivariate Hermite polynomials. Special emphasis is given to those bivariate orthogonal polynomials introduced by Hermite by means of a Rodrigues type formula related to a general positive definite quadratic form. For this family we prove that the zero set of the polynomial of total degree n+mn+m consists of exactly n+mn+m disjoint branches and possesses n+mn+m asymptotes. A natural extension of the notion of interlacing is introduced and it is proved that the zero sets of the family under discussion obey this property. The results show that the properties of the zero sets, considered as affine algebraic curves in R2R2, are completely different for the three families analyzed.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , ,