Article ID Journal Published Year Pages File Type
4616185 Journal of Mathematical Analysis and Applications 2014 12 Pages PDF
Abstract

We develop the theory on the Fock space of metaanalytic functions, a generalization of some recent results on the Fock space of polyanalytic functions. We show that the metaanalytic Bargmann transform is a unitary mapping between vector-valued Hilbert spaces and metaanalytic Fock spaces. A reproducing kernel of the metaanalytic Fock space is derived in an explicit form. Furthermore, we establish a complete characterization of all lattice sampling and interpolating sequence for the Fock space of metaanalytic functions.

Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , , ,