Article ID Journal Published Year Pages File Type
4622812 Journal of Mathematical Analysis and Applications 2006 13 Pages PDF
Abstract

We show that Asplund sets are effective tools to study differentiability of Lipschitz functions, and ε-subdifferentiability of lower semicontinuous functions on general Banach spaces. If a locally Lipschitz function defined on an Asplund generated space has a minimal Clarke subdifferential mapping, then it is TBY-uniformly strictly differentiable on a dense Gδ subset of X. Examples are given of locally Lipschitz functions that are TBY-uniformly strictly differentiable everywhere, but nowhere Fréchet differentiable.

Related Topics
Physical Sciences and Engineering Mathematics Analysis