Article ID Journal Published Year Pages File Type
4626268 Applied Mathematics and Computation 2015 14 Pages PDF
Abstract

This paper is concerned with exponential synchronization and anti-synchronization of memristor-based neural networks. Under the framework of Filippov systems and a linear controller, the exponential synchronization and anti-synchronization criteria for memristor-based neural networks can be guaranteed by the matrix measure and Halanay inequality. The criteria are very simple to implement in practice. Finally, two numerical examples are given to demonstrate the correctness of the theoretical results. It is shown that the matrix measure can increase the exponential convergence rate and decrease the feedback gain effectively.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,